

Workshop Goals

- Develop a coherent picture of current status
 - Define direction
- Identify issues and priorities for next Workshop on Advanced Accelerator Magnets (WAAM)
 - Get some work done between now and then

Working Groups

- Magnets at the limit of Nb₃Sn
 - Gian Luca Sabbi, LBNL, Chair
 - Davide Tomassini, CERN
 - Shlomo Caspi, LBNL
 - Michel Segreti, CEA/Saclay
 - Tom Taylor, CERN (ret.)
 - P. McIntyre, TAMU
- Materials
 - Ron Scanlan, LBNL, Chair
 - Bruce Strauss, DOE
 - Rene Flukiger, U. Geneva
 - Ettore Salpietro, EFDA
 - Seung Hong, OI-ST

- Superconducting Magnets in High Radiation Environments
 - Nikolai Mokhov, FNAL, Chair
 - Steve Gourlay, LBNL
 - Al Zeller, NSCL
 - Deepak Chichili, FNAL
 - S. van Sciver, NHMFL
- Fast Cycling Superconducting magnets
 - Arup Ghosh, BNL, Chair
 - Al McInturff, LBNL
 - Gebhard Moritz, GSI

Bill Barletta, Workshop Director

Magnets at the limit of Nb₃Sn

Goals

Concentrate on very high field magnets

(LHC upgrade is the most likely application in the "near" term)

Discussion Topics:

- Coil Design
- Mechanical support & assembly
- conductor, operating temperature
- aperture, field quality, dynamic range
- stored energy, inductance
- radiation issues
- magnet cost

Establish R&D targets?

(as for DOE conductor program)

Proposed Magnet R&D Targets

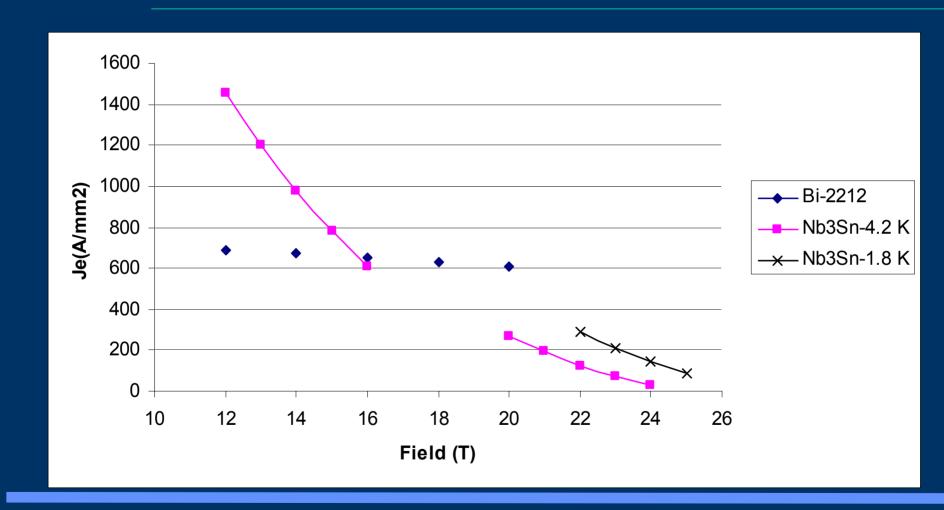
• Technology:

- #1: Bore field \geq 18 T with \geq 5 mm clear bore
- #2: Bore field ≥ 16 T with ≥ 30 mm clear bore (cold bore included)
- #3: Bore field ≥ 14 T with ≥ 3 m magnetic length
- Dipoles ($B_0^{\text{nom}}=14 \text{ T}$, harmonics as measured at 10 mm physical radius):
 - #4: All central harmonics ≤ 3 units at B_0^{nom}
 - #5: All central harmonics ≤ 10 units from $0.1*B_0^{nom}$ to B_0^{nom} @ LHC R.R.
- Quadrupoles (Gnom=200 T/m, harm. as measured at 20 mm physical radius)
 - #6: All central harmonics ≤ 3 units at Gnom

Materials

Main emphasis for HEP--reduce D_{eff}

- Increase number of subelements (OST, OKAS, Supergenics)
- Use fins to subdivide subelements (OST, OKAS, Supergenics)
- PIT conductor fabrication (SMI, Supercon)


All three approaches can (in principle) produce D_{eff} = 40 microns, with J_c near 3000 A/mm².

Deff = 20 microns may be possible, but it is a big step, requiring more R&D

Another method to reduce magnetization at low fields--reduce low field J_c

LTSW 03

Conductor Performance Comparison

Conductor Summary (Magnet WG)

- A 40% copper fraction may be feasible for RRP wires
 - Ic increase by +20% gives +0.5T in HD-1 at 4.2 K
 - Well worth pursuing, some risk (drawing, cabling)
- Ic measurements at 1.9 K in 16-18 (20) T range are needed
- Further R&D on keystoned cables required for $\cos\theta$ designs
 - Some work already planned in connection with LARP
- Pay close attention to new conductors (e.g. with SM "technology" tests)
- Smaller filaments are <u>not</u> needed for LARP or present arc dipole R&D
 - Rather increase I_c, J_c, stress tolerance for near term R&D and applications
 - However, a statement from AP is required regarding LHC upgrade specs
 - Also, keep an eye on stability limits
- Much smaller filaments may ultimately be needed develop in parallel?

Nb₃Sn for ITER and HEP

- Many common issues
 - --J_c vs strain behavior
 - -- Radiation damage limits for insulation (and conductor)
 - --Scale up of production capacity (should reduce costs for both programs
- Conductor programs should be complementary and coordinated

LTSW 03

SC Magnets in a High Radiation Environment

- Radiation issues for various machine configurations
 - LHC IR Upgrade
 - SLHC
 - VLHC
- Radiation dose limits for various materials
- Radiation heat-loads in SC magnets
- Cryogenic implications

Radiation Issues

- Quench stability (peak power density, heat transfer)
 - OK at LHC and SLHC with appropriate protection system
- Dynamic heat loads
 - OK at LHC (30 W/quad) and challenging at SLHC (3.5 kW in dipole-first)
- Radiation damage: 10-yr dose is 20 (LHC) to 50 MGy averaged over cable height
 - Neutron fluence seems to be not an issue 10^{16} to $4x10^{16}$ cm⁻² over 10 years $(3x10^{17}$ at SLHC Cosθ)
- Residual dose rates Hands-on maintenance
 - OK at LHC and challenging at SLHC

General Radiation Dose Limits

Material Useful limit (MGy)

Copper >10⁴

Iron, Stainless steel >>10³

Ceramics >10³

Organics $\sim 10^2$

(most sensitive properties)

Cryogenic Considerations

Perspective from LHC point of view

- Accelerator cryoplant: $4 \times 18 \text{ kW} = 72 \text{ kW}$ @ 4.5 K
- Beam screen requires 1.7 W/m between 4.6 and 20 K (1.7 W/m x 27 km = 45.9 kW)
- Remaining ~ 26 kW mostly goes to 1.9 K cooling
- 26 kW converts to ~ 11 kW @ 1.9 K due to lower thermodynamic efficiency
- Average 1.9 K heat load on LHC accelerator magnets < 0.4 W/m
- IR 110 W/4 quads (total = 440 W @ 1.9 K)

Cryogenics for Luminosity Upgrade

- Luminosity upgrade from 10³⁴ to 10³⁵ results in increase in beam screen heat load from 1.7 W/m to 15 W/m
 - Increase total screen load to 405 kW @ 4.6 to 20 K!
 - Impact on 1.9 K load on main ring dipoles (0.4 W/m to ~ 0.8 W/m) or ~ 22 kW
 ② 1.9 K
 - Can be handled by changes in cooling configuration

Dipole-First

- $-3.5 \text{ kW} \times 4 \text{ dipoles} = 14 \text{ kW} (30 \text{ times LHC}) \text{ at } 1.9 \text{ K}, 4.5 \text{ K}, \text{ higher T}?$
- Options to consider
 - Operating magnets at higher T, but can they be cooled & stabilized?
 - Use of HTS would help with overall power requirements if they could operate $\sim 20~\mathrm{K}$ or higher.

Radiation Loads in SC Magnets

Main ring magnets ~ total beam energy 0.35 GJ (LHC), 1.1 GJ (SLHC), 3.2 GJ (VLHC) and beam loss rate (electron clouds, collimation efficiency)

• IR magnets - upgrade energy, not luminosity

Rad WG Summary

- Generate table
 - Characterize various IR designs in terms of radiation environment
 - Peak energy deposition
 - Fluence
 - Dose
 - Cryo load
 - Define material properties and acceptable design criteria for given dose
- Survey of fusion program results
 - Identify relevant information (no duplication)
 - Identify areas for focus
 - Nb₃Sn behavior in LHC IR radiation field
 - Develop appropriate tests (magnetization measurements in lieu of direct Jc)
- Identify existing rad hard materials for incorporation into magnet programs
- Focus R&D on what is left

Fast Cycling SC Magnets

Focus is on magnets for GSI IAF

- SIS 100 ring cycling to 2 T at 4 T/s
- SIS 200 ring cycling to 4T at 1 T/s
 - GSI-001 RHIC-style magnet
- SIS 300 ring cycling to 6T at 1 T/s

For cos-theta magnets

- Minimize SC magnetization
 - Small filament diameter (2.5 micron)
 - Suppress proximity-coupling by using Cu-2.5% Mn matrix
- Reduce eddy current magnetization
 - High resistive matric Cu-2.5% Mn
 - Small twist pitch, practical limit 5 X D
 - Jc > 2.500 A/mm2 at 5T

Fast Cycling SC Magnets

- SC magnets cycling at 1 4 T/s are quite feasible
- Develop strand with smaller filament size
 - -2.5-3.5 micron goal
 - Nb3Sn an option?
- Development of single tape "cored" cables
 - Eliminate R_c eddy current loss

